
 ■ Establishing a 
company glossary

 ■ The key to 
successful developer 
documentation

 ■ The cost of the cloud

Communicator
The Institute of Scientific and Technical Communicators

Autumn 2023
Writing for SaaS



13

Documentation

Empathy in Every Detail:
The Key to Successful Developer Documentation by Diana Lakatos.

Developer documentation provides information, 
guidance, and examples for using APIs, frameworks, 
and software platforms. It aids in onboarding, and 
strengthens developer relations by keeping users 
informed, fostering community, and encouraging 
collaboration. When you're working on developer 
documentation, you have the advantage of knowing 
its primary target audience—developers—from 
the start. While there are various other audience 
segments, the majority of users are indeed 
developers who vary widely in skills, approaches, 
and learning methods. Because of this, you 
might find that some of the aspects discussed 
in this article are developer-centric. However, 
most of the strategies detailed here are also 
designed to enhance the experience for other 
audience segments, including people working 
in support, product owners, business analysts, 
project managers, DevRel practitioners, developer 
advocates, and technical community managers.

While this article explores several key aspects, there are 
naturally many more to consider. The focus is on cultivating a 
mindset where, at each stage and through various facets, you 
can empathetically connect with your users and find the best 
ways to serve their needs. 

The type of empathy required here entails recognizing, 
valuing, and understanding the thoughts, experiences, and 
emotions of users interacting with your documentation. To be 
genuinely helpful, you must grasp their experience from their 
perspective. It's not about making assumptions or guessing their 
thoughts. Instead, there are various methods available to truly 
understand them. This leads us to our first aspect: user research. 

Aligning with the ISTC Communicator 
Autumn issue's theme of 'Writing for 
SaaS', I'd like to add that many leading 
examples of developer documentation 
come from SaaS companies. Stripe, 
Twilio, and GitHub, for instance, 
are frequently cited as benchmark 
references in developer documentation.

Communicator Autumn 2023 



14

Documentation

1. Clarke, S. (2007) What is an end user software engineer? — Dagstuhl 
Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

2. Watson, R. B. (2015) The effect of visual design and information content 
on readers’ assessments of API reference topics (Doctoral dissertation)

3. Meng, M., Steinhardt, S., Schubert, A. (2019) How Developers Use 
API Documentation: An Observation Study — Communication Design 
Quarterly (January 29, 2019)

User research
User research is the foundation for understanding the people 
who engage with your documentation. Research should be 
woven into every phase of your documentation process as it 
continuously offers new insights about user expectations, 
behaviours, needs, and motivations via systematic 
investigative methods—enabling you to tailor your content 
and documentation site features to real user needs. 

To gain insights into developers at large and specifically 
those who engage with your documentation, you can explore 
existing research and, of course, conduct your own.

Existing research
Delving into existing research provides insights into the tactics 
and techniques developers employ, their preferred workflows, 
their interaction with documentation, and their underlying 
thought processes. 

Studies by Clarke1, Watson2, Meng et al.3, and others 
illuminate how developers engage with documentation. These 
insights help you grasp their problem-solving strategies, risk 
assessments, and learning methods. For instance, Clarke 
identified three primary approaches to coding and learning: 
systematic, opportunistic, and pragmatic. Systematic 
developers are cautious and thorough. They prioritise the 
need to understand technology deeply before usage. They 
tend to read documentation extensively and adhere to given 
guidelines, aiming for clean, efficient code. Opportunistic 
developers dive right in, sourcing information just-in-time for 
the task at hand. They often veer from standard procedures, 
searching the web while coding. Pragmatic developers 
combine systematic and opportunistic approaches. They learn 
enough to begin and consult resources as challenges arise. 
Each developer's approach might shift based on the task or 
context. Providing content for all approaches is a genuine 
challenge. You can address this by continuously learning 
about your users and adapting your content, navigation, and 
documentation site features to meet their needs. 
Fundamentally, all developers require: clear concepts, 
procedural information, references, code samples, intuitive 
navigation, and efficient search functionalities.

Your documentation will cater to a range of developers, 
varying in experience and specialisation. This includes junior 
to senior developers, backend to frontend experts, and even 
your own team members. You also have to consider factors 
like language proficiency, neurodiversity, and varying abilities. 
It's vital to gauge and periodically reassess the needs, 
abilities, and expertise of your audience, as it heavily 
influences your content, structure, and onboarding strategies.

The patterns gleaned from research offer a framework for 
understanding developers' thought processes and behaviours. 
However, it's crucial to remember that every developer is 
unique. To gain deeper insights into the developers and other 
target audience segments using your documentation, 
conducting your own user research is essential.

Conducting user research 
Regular user research should be a continuous activity 
throughout the documentation development cycle starting 
from the discovery phase. Several user research 
methodologies are available, and choosing the right method 
often depends on the specific phase of documentation 
development and the problem you are trying to solve. The 
discovery phase, for instance, benefits from field studies, diary 
studies, and both user and stakeholder interviews. As the 
project progresses, workshops can be utilised to develop 
personas and identify essential tasks. The prototyping phase 
can be enhanced with usability studies and accessibility 
evaluations. As the documentation nears completion, surveys 
and analytical reviews offer valuable feedback and insights. 

Regardless of the chosen method, the goal remains 
consistent: identify patterns across user interactions, 
comprehend the underlying reasons for specific behaviours, and 
leverage these insights to guide documentation decisions. 
Through user research, you can also develop personas—semi-
fictional archetypical users whose goals and characteristics 
represent the needs of target audience segments. Personas can 
assist in maintaining a user-focused approach during all stages. 

Conducting research for developer documentation is a 
complex task, so you’ll greatly benefit from having a UX 
Researcher on your team. As you conduct regular user 
research, you'll discover its profound impact on the quality of 
your developer documentation, including its relevance and 
usefulness to your users. 

Community 
The community-driven documentation approach aims to involve 
users into every stage of documentation development. This 
method fosters a culture of open dialogue and transparency 
between the documentation team and its community. The early 
and consistent feedback loop ensures immediate testing and 
validation of all assumptions. With the community playing an 
active role—offering insights, adding content, and influencing 
the documentation's trajectory—the final product resonates 
more closely with their needs. By actively engaging users early 
and maintaining constant collaboration, you can swiftly validate 
plans and make necessary adjustments. This approach saves 
time and money by minimising the risk of producing large 
sections of content that don't align with user needs.

Maintaining this constant collaboration builds trust. When 
the entire documentation process is transparent, the 
community can track the evolution of content and feel 
confident that their feedback is valued. 

Forge strong relationships with your community from the 
beginning. Ways to involve users include regular user research, 
engaging with community members across multiple platforms, 
and providing them various opportunities for contribution.

Contribution
I believe that every piece of input—be it from team members, 
users, clients, partners, or even individuals from completely 
different disciplines—that enhances or propels your 
documentation forward, qualifies as a contribution.

Developers contribute in various ways, including supplying 
technical writers with information and code examples through 
drafts, descriptions, or videos. They might add new topics to 

 Communicator Autumn 2023



15

your documentation or adjust and update existing ones. 
Additionally, they review changes made by other team or 
community members, test code examples, report issues, and 
highlight areas for improvement. 

Other contributors can provide invaluable insights. For 
example, account managers often share feedback from their 
client interactions, pinpointing areas that require more 
support. Those in support roles can quickly identify content 
gaps or areas needing enhancement. External contributors, 
driven by their passions, may offer suggestions to improve 
clarity, accessibility, or inclusiveness in the documentation.

Feedback
Consistent communication with your users is essential for 
refining documentation. By observing their interactions, you'll 
glean feedback and questions that highlight areas for 
enhancement. For example, if users routinely ask questions 
on various channels due to documentation gaps, it's wise to 
update those sections to provide the necessary information 
for future users.

Feedback can encompass everything from specific product 
features and documentation structure to navigation and the 
clarity of content. To facilitate the feedback collection process, 
consider embedding a feedback block at the bottom of each 
documentation page. This could allow for simple inputs, like a 
smiley rating, but also give users the option to provide 
detailed suggestions. In our experience, such feedback 
mechanisms have been helpful in indicating which 
documentation sections might need further refinement.

Editorial workflow
For content contribution, implementing an efficient editorial 
workflow is crucial—one that seamlessly accommodates both 
internal and external contributors, and ensures they receive 
prompt and precise feedback. 

When aiming to encourage contributions from developers, 
it's essential to establish an editorial workflow that makes it 
easy for them to contribute. In my experience, Docs as Code 
is a great fit for developer documentation:
 � The primary contributors—developers themselves—are 
already well-versed in the tools and workflows associated 
with the Docs as Code approach. This means they can start 
contributing without the learning curve, thereby eliminating 
potential barriers.

 � For teams and communities spread across multiple time 
zones, Docs as Code’s inherent support for asynchronous 
communication allows for timely contributions, feedback, 
and edits without expecting instant responses. 

 � Docs as Code permits contributors to work within their 
preferred environments.

 � While tailored for developers, you can make this approach 
work for non-developers, too. This might include simplifying 
certain processes, using easily understandable markup 
languages, and offering additional support like online text 
editors.

Reviews in a Docs as Code environment offer a great 
opportunity to engage with both internal and external users, 
fostering collaboration to refine documentation. Often 
overlooked in comparison to other communication channels, 
they play a unique role, especially in open-source 

documentation, reflecting team dynamics and shaping 
community culture. Throughout the review process, prioritise 
clear and empathetic communication, advocating for a range 
of diverse insights, and fostering an atmosphere of mutual 
respect and understanding. 

A Docs as Code approach also enables you to incorporate 
automated tests and linters into your review process to ensure 
high-quality content, accessibility, and inclusion in your 
documentation. Linters are tools that automatically check your 
code or documentation against specific rules. For instance, 
you can check for any broken links, scan for grammatical or 
spelling mistakes, identify non-inclusive language, or assess 
the readability of your content. 

Contributor Guide
In addition to offering a familiar editorial workflow, first-time 
contributors to your documentation require a clear starting 
point. A Contributor Guide can provide the essential 
information they need to dive in. A well-crafted Contributor 
Guide should be both succinct and comprehensive. It should 
include details on giving feedback, a tutorial for updating or 
adding new content, links to the Style Guide with a succinct 
overview of its main points, and references to templates (if 
available) along with explanations of their purpose. Also, 
ensure there's a direct channel for contributors to 
communicate any questions or concerns. 

Documentation Style Guide
A documentation style guide is an essential tool for maintaining 
consistency, clarity, and effectiveness in your written content. It 
ensures that your writing remains grammatically sound and 
clear and is also tailored to the unique needs of your target 
audience. Beyond text, it offers guidelines for integrating 
images and videos, making it an indispensable resource for 
contributors, reviewers, and editors. 

The creation of a style guide is iterative; it evolves as you 
add to it, test its guidelines, and gather feedback throughout 
the content creation process. This guide will be both a 
reference and a benchmark, ensuring a consistent quality and 
approach in your documentation. As questions or decisions 
arise during content production, adding them to your style 
guide will organically grow it into a comprehensive resource 
for all contributors.

Templates 
Templates are like blueprints with set content and 
placeholders. These placeholders actively direct where and 
how to add varying content, help with the desired format, 
such as titles, and may include certain parameters like 
character limits.

By using templates designed in your selected markup 
language, even contributors who are not familiar with the 
language can more easily create content. Beyond simplifying 
the content creation process, templates bolster 
documentation consistency, ensuring each topic adheres to a 
uniform structure. 

Initial documentation structures often revolve around 
foundational content types, such as tutorials that delineate 
tasks, concepts that provide context, and references like API 
references. As your documentation expands, you'll need to 

Communicator Autumn 2023 



16

Documentation

introduce additional templates for content types like release 
notes and use cases.

While streamlining the contribution process with supportive 
tools and workflows is essential, it's equally important to 
consistently recognize and reward contributors for their 
valuable input. Doing so creates a positive experience for 
contributors and encourages ongoing engagement and 
involvement in your project. 

Communication
Effective communication is crucial in developing and 
maintaining documentation. By offering a variety of channels 
for interaction, you can ensure that your community members 
remain informed and actively engaged while granting them 
the liberty to choose the platform they're most comfortable 
with. Regularly sharing updates on new features, 
improvements, and other changes helps in fostering a culture 
of transparency and collaboration.

Real-time communication channels, such as chats, serve as 
platforms for immediate feedback and discussions. Such 
direct interactions often yield valuable insights, serving as a 
direct indicator of the community's needs and concerns, 
subsequently helping to refine and enhance the 
documentation further. Hosting video conferences can 
deepen these interactions, allowing for more structured 
presentations, feature demonstrations, and strategic 
discussions, all of which can help align the visions of both the 
team and the community.

For more structured communication, incorporating a Q&A 
interface on community platforms can be beneficial. These 
platforms can spotlight the most pressing concerns, frequently 
asked questions, or emerging trends within the community, 
serving as a guide for documentation improvement. 

Harnessing the power of varied communication channels is 
not just beneficial but essential for a documentation's 
evolution, ensuring it remains responsive to the ever-evolving 
needs of its community.

Performance
A fast documentation site ensures that users stay engaged 
and benefit from a superior user experience, helps the site 
rank higher in search results, and contributes to the site’s 
sustainability. The Google/SOASTA Research from 2017 
revealed that a mere two-second increase in page load time, 
from 1 to 3 seconds, raises the bounce probability by 32%. If 
this load time extends from 1 to 5 seconds, the bounce 
likelihood increases to a staggering 90%.

Performance measurement tools provide insights into a site's 
performance on both desktop and mobile platforms and offer 
recommendations for improvement. It's important to understand 
how these tools calculate performance scores and the impact 
of specific metrics on the overall score. Conducting regular 
tests across various pages helps establish clear performance 
benchmarks tailored to the unique attributes of each page. 
Prioritising performance from the beginning and implementing 
consistent refinements is key to achieving optimal results. 

Search
Both the research I previously mentioned and the results of 
the user research we’ve conducted over the years indicate 

that developers primarily visit your documentation site with a 
goal: to learn or to address a particular issue. It's imperative 
that you guide them efficiently to the information they seek. 
While having a well-organised site navigation is beneficial, the 
significance of an effective search mechanism cannot be 
understated. There are two key types of search to consider:
 � On-site search: This allows users to easily locate information 
within the documentation site. Incorporating analytics into 
this can be invaluable, as it provides insights that can be 
used to further refine and improve the documentation 
based on what users are searching for.

 � SEO (Search Engine Optimization): When developers search 
for different topics on search engines, you have to make 
sure they find relevant information from your site in the 
search results. This boosts the visibility of your content and 
ensures that developers are directed to trustworthy and 
relevant sources. 

Information quality 
Documentation serves as the bridge between the developer 
and the product, making the quality of information contained 
within it essential to developer success. The inherent value of 
information is determined by its quality, which refers to the 
attributes and characteristics that make it valuable to the 
intended audience. 

A key measure of information quality is its accuracy. 
Documentation is considered accurate when the content is 
factually correct, up-to-date, and free from errors. Consistency 
is equally important, ensuring that no information is 
contradictory. This extends to sample code in repositories, 
emphasising the need for rigorous testing and validation.

Completeness is another quality requirement. To cater to 
user needs efficiently, documentation should encompass all 
essential details. Whether documenting procedures, API 
references, or other technical details, the information should 
be both exhaustive and concise. Completeness ensures users 
are well-informed, but it's equally vital that they aren't 
overwhelmed by unnecessary detail. 

Readability, on the other hand, determines the ease of 
consumption. Explaining technical detail requires a blend of 
precision and simplicity. Write in clear, concise language, with 
technical jargon adequately explained. Information 
architecture also plays a crucial role here, guiding users 
seamlessly through the documentation. 

Relevance of information means that it should be applicable 
to real-world scenarios and use-cases developers might face. 
To craft relevant content, you must develop a deep 
understanding of your audience.

Accessibility and inclusion
Accessibility allows people with disabilities to effectively use 
digital products. Inclusiveness enables people from various 
backgrounds and circumstances to actively benefit from these 
products and services. 

According to the World Health Organization, approximately 
16% of the global population has some form of disability, and 
nearly all individuals will experience disability at some point, 
either temporarily or permanently. This indicates the 
importance of accommodating users who may have visual, 
auditory, cognitive, or motor impairments, meaning that your 

 Communicator Autumn 2023



17

Diana Lakatos

Diana is an experienced Developer Documentation 
Specialist dedicated to creating high-quality resources 
for developers. She has been pivotal in the 
development of the multiple award-winning 
platformOS Developer Portal, and spoke about 

various aspects of building efficient developer docs at conferences like 
Write The Docs, tcworld, DevRelCon, and API The Docs. 

documentation should be tailored to accommodate users who 
may employ screen readers, voice recognition, keyboard 
navigation, and other assistive tools. Additionally, about 
15–20% of people are neurodiverse, adding another layer of 
consideration in designing documentation that is both 
accessible and inclusive. As these statistics suggest, members 
of your team and community perceive, interpret, and engage 
with your documentation in varied ways. Addressing these 
differences might introduce distinct challenges to the 
developer documentation, but the benefits extend to 
everyone. Practical adaptations, such as including captions for 
videos, enhancing colour contrasts, and adopting a coherent 
and logical content structure, can optimise the user 
experience and reduce cognitive strain for everyone. 

When addressing accessibility and inclusion, there are two 
main areas to concentrate on. First, focus on the technical 
aspects, such as design adjustments and compliance with 
accessibility standards, which you can verify using specific 
tools. Secondly, look at the content itself, ensuring it has a 
clear structure and is written in an inclusive and easily 
understandable manner.

Creating accessible documentation not only demonstrates 
empathy towards specific needs but also enhances the overall 
user experience for everyone.

Sustainability 
The vastness of the Internet and its ever-expanding 
infrastructure makes it a significant consumer of energy. Every 
digital action, from streaming a video to browsing a website, 
leaves a carbon footprint through the servers processing the 
data, the devices displaying the information, and the energy 
used in producing and replacing the necessary hardware. 

When building your developer documentation site, 
understanding the environmental implications of web 
development can steer you towards crafting a more 
eco-friendly digital environment. The Sustainable Web 
Manifesto outlines the path to a greener Internet, focusing on 

renewable energy, efficiency, and transparency, to name a few 
key principles. By embracing these guidelines during website 
creation, you not only adopt sustainable online practices but 
also convey your dedication to environmental responsibility. 

Hosting, performance, image management, fonts, web 
caching, user experience, content management, and search 
engine optimisation are critical factors to consider when 
building sustainable websites. Each plays a significant role in 
optimising the efficiency and environmental impact of your 
online presence.

Learning more about sustainability best practices and 
adjusting your website accordingly can benefit both your 
users and the planet we all live on. 

Conclusion
In this article, I aimed to emphasise the importance of 
adopting an empathetic approach to building developer 
documentation, with the hope of offering insights that you can 
incorporate into your own projects. If you'd like to explore this 
topic further, I highly recommend the presentation titled 
Building Empathy-Driven Developer Documentation by Kat 
King at Write the Docs Portland 2018. It offers an insightful, 
relatable, and often delightfully entertaining perspective. I 
delve deeper into these topics and more in my book, Crafting 
Docs for Success: An End-to-End Approach to Developer 
Documentation. 

Starting out in technical communication?

Help your career blast off with the 
ISTC’s mentoring scheme for Junior 
Members. Join the ISTC today.

Search ‘Mentoring Scheme’ on the ISTC website for details

Communicator Autumn 2023 

http://www.istc.org.uk/professional-development-and-recognition/mentoring-scheme/

	Empathy in Every Detail

